Calculations of Steric Effects. Part II. ${ }^{1}$ The $S_{N} 2$ Halide Exchange Reactions

By Michael H. Abraham,* Priscilla L. Grellier, and Malcolm J. Hogarth, Department of Chemistry, University of Surrey, Guildford, Surrey

Abstract

Using the methods previously described. calculations have been carried out on steric effects in the $S_{\mathrm{N}} 2 \mathrm{Br} \mathrm{Br}^{-} \mathrm{RBr}$ halide exchange reactions. Three transition-state models were investigated, a stiff model, a flexible model with one bond-bending mode, and a plastic model with two bond-bending modes and one bond-stretching mode. With exactly the same set of covalent radii, van der Waals radii, and nonbonded potential functions that were used before, the increments $\delta \Delta G\left[=\Delta G^{\ddagger}(\mathrm{R})-\Delta G^{\ddagger}(\mathrm{Me})\right] . \delta \Delta H^{\ddagger}$, and $\delta \Delta S \ddagger$ were well reproduced by the flexible and plastic models for $\mathrm{R}=\mathrm{Et}, \mathrm{Pr}^{i} . \mathrm{Bu}^{t}, \mathrm{Pr}^{\mathrm{n}}, \mathrm{Bu}^{\mathrm{i}}$, and neopentyl. The most significant difference between results of the present calculations and those of Ingold and his co-workers in 1955 is that we are able to account for the observed values of the activation parameters purely in terms of steric effects, whereas in Ingold's calculations substantial polar effects of α-groups in the transition state were postulated to take place. It is shown that the necessity for the assumption of polar effects arises from the method of calculation of the nonbonded interactions.

Previously, ${ }^{1}$ we have calculated steric effects of alkyl groups, R , on rate constants for the $S_{\mathrm{E}} 2$ reaction (1), a substitution known to proceed with retention of configuration for the case of $\mathrm{R}=\mathrm{Bu}^{8}$. Since our method of

$$
\begin{equation*}
\mathrm{RHgX}+\stackrel{*}{\mathrm{H}} \mathrm{gX} \mathrm{X}_{2} \rightarrow \mathrm{R} \stackrel{*}{\mathrm{H}} \mathrm{gX}+\mathrm{HgX}_{2} \tag{1}
\end{equation*}
$$

calculation involved a number of novel features, and since the nonbonded potential functions that we used had not hitherto been employed in such rate calculations, we thought it advisable to undertake the calculation of
steric effects on a totally different system in order to test the validity of the general method and the functions used. We chose the symmetrical halide exchange reaction (2) for a number of reasons. First, the stereochemistry and mechanism of reaction (2) are well defined, and the known

$$
\begin{equation*}
\mathrm{Br}^{-}+\mathrm{RBr} \longrightarrow \mathrm{BrR}+\mathrm{Br}^{-} \tag{2}
\end{equation*}
$$

inversion of $S_{\mathrm{N}} 2$ reactions should provide an interesting
${ }^{1}$ Part I, M. H. Abraham, P. L. Grellier, and M. J. Hogarth, J.C.S. Perkin II, 1974, 1613.
contrast to the retention observed in reaction (1). Secondly, although the halide exchange reactions have been extensively investigated by Ingold and his coworkers, ${ }^{2,3}$ who carried out detailed calculations on steric effects, the results of Ingold have not been universally accepted; the experimental results have been subject to criticism (see later), and the actual calculations are so cumbersome that few workers have felt able to discuss the method of calculation in any detail. We felt that a more direct calculation of steric effects in reaction (2) was timely, especially as that further experimental results on the halide exchange reactions are now available.

There is no doubt that the calculations of Ingold ${ }^{3}$ on reaction (2) yield rate constants, relative to $k^{\mathrm{Me}}=1$, that are in substantial agreement with experiment. ${ }^{4}$ However, there are a number of unsatisfactory features in the calculations. There are incorporated in the calculations a large number of parameters, some of which are adjustable and some of which are estimated. More seriously, agreement between calculation and experiment is achieved only by the inclusion of polar factors arbitrarily weighted as 1 kcal for $\mathrm{R}=\mathrm{n}$-alkyl, 2 kcal for $\mathrm{R}=\mathrm{s}$-alkyl, and 3 kcal for $\mathrm{R}=\mathrm{t}$-alkyl. For example, values of $\delta \Delta H^{\ddagger}$ for reaction (1) were calculated as in Table $1,{ }^{3}$ where ΔW_{s} is the calculated steric effect and ΔW_{p} the

Table 1
Steric and polar effects in Ingold's ${ }^{3}$ calculations

R	Me	Et	Pr^{i}
$\Delta W_{\mathrm{s}} / \mathrm{kcal} \mathrm{mol}$			
$\Delta W_{\mathrm{p}} / \mathrm{kcal} \mathrm{mol} \mathrm{mol}^{-1}$	0	0.8	1.6
$\delta \Delta H^{\ddagger}($ calc. $)$	0	1	2
$\delta \Delta H^{\ddagger}$ (obs.)	0	1.8	3.6
$\delta \Delta G^{\ddagger}$ (calc.)	0	1.7	3.9
$\delta \Delta G^{\ddagger}$ (obs.)	0	2.4	4.7
	0	2.6	5.2

assumed polar effect. In these cases, the assumed polar term (ΔW_{p}) makes the major contribution to $\delta \Delta H^{\ddagger}$ (calc.) and substantial contributions (40%) to $\delta \Delta G^{\ddagger}$ (calc.). We hoped that our own calculations might help to resolve this problem of the assumed polar effect.

Theory of the Method.--Since we have discussed ${ }^{1}$ our method of calculation fully, and since the method is applied here in its entirety, we give now only an outline of the method with respect to its application to reaction (2). The procedure used falls into two clear parts. In the first part, the geometry of a transition state is defined and distances between nonbonded atoms or groups then calculated. Nonbonded potential functions are set up that relate the energy of interaction to internuclear distance and the various nonbonded interactions are obtained, after suitable corrections for the nonspherical shape of a methyl group and for shielding by intervening atoms. Rotation of groups is allowed, and calculations are carried out until the position of minimum energy ($E^{\ddagger}{ }_{\text {min }}$) is found. A similar calculation is carried out for the initial state (in this case RBr) to yield the term $E^{\mathrm{i}}{ }_{\text {min }}$, and the effect of these terms on the rate constant is given by $E=\exp \left[-\left(E_{\text {min }}^{\ddagger}-E_{\text {min }}^{i}\right) / R T\right]$. This

[^0]simple expression holds because interactions in MeBr and in the transition state $[\mathrm{BrMeBr}]^{\ddagger}$ are small enough to be taken as zero.

Where rotation is not completely free, the above procedure also yields the energy profile for rotation. In the second part of the calculation the effect of such restricted rotation on the rate constant is determined by calculating the average angle of rotation of a set of molecules in the potential well; the rotational factor is then given by $F=$ average angle of rotation $/ 360$, since for completely free rotation the rotational angle is 360° : These rotational factors are determined for initial-state and transitionstate rotation of β-methyl groups $\left[\mathrm{R}=\mathrm{Pr}^{\mathrm{n}}, \mathrm{Bu}^{\mathrm{i}}\right.$, and neopentyl $\left.\left(\mathrm{Pe}^{\mathrm{neo}}\right)\right]$, and also for transition-state rotation of α-methyl groups in certain circumstances. The final expression for the rate factors $k^{\mathrm{R}} / k^{\mathrm{Me}}$ is given by equation

$$
\begin{equation*}
k^{\mathrm{R}} / k^{\mathrm{Me}}=F E=\frac{F_{\alpha} \ddagger_{\alpha} \cdot F_{\beta}^{\ddagger}}{F_{\beta}^{\mathrm{i}}} \exp \left[-\left(E_{\text {min }}^{\ddagger}-E_{\text {min }}^{\mathrm{i}}\right) / R T\right] \tag{3}
\end{equation*}
$$

(3). The rotational factors are all unity for the initial state MeBr and the transition state $[\mathrm{BrMeBr}]^{\ddagger}$.

In all our calculations we have used the covalent radii, van der Waals radii, and nonbonded potential functions tabulated before. ${ }^{1}$ We set out the experimental observations of reaction (2), and then give the results of our calculations in order of increasing complexity of the transition state model adopted. To avoid rather large rate factors we recast equation (3) as (4) where $\delta \Delta G^{\ddagger}$ (cal mol^{-1}) is defined as $\Delta G^{\ddagger}(\mathrm{R})-\Delta G^{\ddagger}(\mathrm{Me})$.

$$
\begin{equation*}
\delta \Delta G^{\ddagger}=\left(E_{\min }^{\ddagger}-E_{\min }^{\mathrm{i}}\right)-1364 \log \left(\frac{F_{\alpha}^{\ddagger} F_{\beta}^{\ddagger}}{F_{\beta}^{\mathrm{i}}}\right) \tag{4}
\end{equation*}
$$

Since initial state effects are the same throughout, we first summarise in Table 2 the terms $E^{\mathrm{i}}{ }_{\text {min }}$ and $F^{\mathrm{i}}{ }_{\beta}$ for the various alkyl bromides studied.

Table 2
Calculated initial state effects ($E / \mathrm{cal} \mathrm{mol}^{-1}$) for alkyl bromides at 298 K

	Me	Et	$\mathrm{Pr}^{\text {i }}$	But	Pr^{n}	$B u^{i}$	Pe ${ }^{\text {neo }}$
$\alpha-\mathrm{Me}-\mathrm{Br}$ interaction	0	85	170	255	85	85	85
$\beta-\mathrm{Me}-\mathrm{Br}$ interaction					-296	-362	-48
$E^{\text {min }}$	0	85	170	255	-211	-277	37
$\mathrm{Fi}_{\beta}{ }^{\text {b }}$					0.651	0.396	0.245

Experimental Observations.-Rate constants for the $\mathrm{Br}^{-}-\mathrm{RBr}$ reaction and for several other halide exchanges were obtained by Ingold and his co-workers, using acetone solvent. ${ }^{2,3,5}$ The various experimental results have been criticised (see ref. 4) chiefly because (i) the lithium halides used as the source of the halide ions are only weak electrolytes in acetone, and (ii) the results for the socalled $S_{\mathrm{N}} 2$ exchanges of t-butyl halides in acetone are erroneous since these reactions are not $S_{\mathrm{N}} 2$ substitutions at all, but proceed by an elimination-addition mechanism. More recently, Cook and Parker ${ }^{4}$ have re-investigated the $\mathrm{Cl}^{-}-\mathrm{RBr}$ reaction using solvent dimethylformamide
${ }^{3}$ P. B. D. de la Mare L. Fowden, E. D. Hughes, C. K. Ingold, and J. D. H. Mackie, J. Chem. Soc., 1955, 3200.
${ }^{4}$ D. Cook and A. J. Parker, J. Chem. Soc. (B), 1968, 142.
${ }^{5}$ P. B. D. de la Mare, J. Chem. Soc., 1955, 3180.
(DMF) under conditions such that the above criticisms are rendered nugatory. In particular, they obtained the true rate constant for the $S_{\mathrm{N}} 2$ exchange $\mathrm{Cl}^{-}-\mathrm{Bu}{ }^{\mathrm{t}} \mathrm{Br}$ so that it is now possible to assess the steric effect of the $B u^{t}$ group, in terms of the σ-values defined by equation (5). The change of solvent from acetone to DMF has no

$$
\begin{equation*}
\sigma=\log k^{\mathrm{Me}}-\log k^{\mathrm{R}} \tag{5}
\end{equation*}
$$

great effect on the σ values, as can be seen for the $\mathrm{Cl}^{-}-\mathrm{RBr}$ reaction (Table 3). A plot of σ in DMF against σ in acetone yields a good straight line except for the point for $\mathrm{R}=\mathrm{Pe}^{\text {neo }}$, where the recent work indicates a value of 6.92 in acetone rather than the quoted value of 6.37 .
allowed, although rotation about the $\mathrm{C}_{\alpha}-\mathrm{C}_{0}$ axis is permitted. Since we have fixed the various nonbonded

Scheme 1 The stiff transition-state model
potential functions, the only adjustable parameter is the $\mathrm{C}_{0} \cdots \mathrm{Br}$ partial bond length. We took this length at $2.22 \AA$, close to the value of $2.25 \AA$ used by Ingold

Table 3
σ Values for $S_{\mathrm{N}} 2$ reactions of alkyl halides

Reaction	Me	Et	$\mathrm{Pr}^{\text {i }}$	$B u^{\text {t }}$	$\mathrm{Pr}^{\text {n }}$	$B u^{i}$	Pe ${ }^{\text {nec }}$
Average values ${ }^{\text {a }}$	0	1.31	2.92	$4.40{ }^{\text {a }}$	1.67	2.70	6.18
Average values ${ }^{6}$	0	1.5	3.1	$4.6{ }^{\text {a }}$	1.9	3.0	6.5
$\mathrm{Br}^{-}-\mathrm{RBr}$ in acetone ${ }^{5}$	0	1.88	3.84	$5.50{ }^{a, b}$	2.07	3.36	$\begin{aligned} & 7.70{ }^{a} \\ & 6.70 \end{aligned}$
$\mathrm{Cl}--\mathrm{RBr}$ in $\mathrm{DMF}{ }^{4}$	0	1.57	3.31	4.66	1.73	3.05	6.77
$\mathrm{Cl}--\mathrm{REr}$ in acetone ${ }^{\text {c }}$	0	1.79	3.67	$4.76{ }^{\text {a }, b}$	1.97	2.61	6.92, ${ }^{\text {a }}$

${ }^{a}$ Calculated from σ values for the $\mathrm{Cl}-\mathrm{RBr}$ reaction in DMF. ${ }^{b}$ The originally reported values refer to elimination-addition reactions. ${ }^{c}$ E. D. Hughes, C. K. Ingold, and J. D. H. Mackie, J. Chem. Soc., 1955, 3173.

Table 4
Observed activation parameters for the $\mathrm{Br}^{-}-\mathrm{RBr}$ exchange in acetone

	Me	Et	Pr^{i}	$B u^{t}$	$\mathrm{Pr}^{\text {n }}$	$\mathrm{Bu}^{\text {i }}$	Pe ${ }^{\text {neo }}$
σ-Value (Table 3)	0	1.88	3.84	5.50	2.07	3.36	7.70
$\delta \Delta G^{\ddagger} / \mathrm{kcal} \mathrm{mol}^{-1}$	0	2.56	5.24	7.50	2.82	4.58	10.50
$\delta \Delta H^{\ddagger} / \mathrm{kcal} \mathrm{mol}^{-1}$	0	1.7	3.9	$8.0{ }^{\text {a }}$	1.7	3.1	$9.0{ }^{\text {a }}$
$\delta \Delta S^{\ddagger} / \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	0	-2.7	-4.6	$+1.7{ }^{a}$	-4.1	-5.0	-5.0^{a}

There are also good linear relationships between the σ values of Streitwieser ${ }^{6}$ and of Okamoto ${ }^{7}$ and those for the $\mathrm{Cl}^{-}-\mathrm{RBr}$ reaction in DMF, from which σ values for the Bu^{t} group may be calculated (Table 3). Also in Table 3 are the experimental data ${ }^{3,5}$ for the $\mathrm{Br}^{-}-\mathrm{RBr}$ reaction in acetone; again there is a good linear relation with σ values for the $\mathrm{Cl}^{-}-\mathrm{RBr}$ reaction in DMF from which a value for the $B u^{t}$ group can be found, and from which a revised value for the $\mathrm{Pe}^{\text {neo }}$ group can be calculated.

It is not so easy to estimate the correct $\delta \Delta H^{\ddagger}$ and $\delta \Delta S^{\ddagger}$ values for the $\mathrm{Br}^{-}-\mathrm{RBr}$ reaction in acetone for the Bu^{t} (and also the $\mathrm{Pe}^{\text {neo }}$) group.* Cook and Parker ${ }^{4}$ give $\delta \Delta H^{\ddagger}$ a value of $7.6 \mathrm{kcal} \mathrm{mol}^{-1}$ for the $\mathrm{Cl}^{-}-\mathrm{Bu}^{\dagger} \mathrm{Br}$ exchange in acetone, but a value of only $3.3 \mathrm{kcal} \mathrm{mol}^{-1}$ for the corresponding exchange in DMF, even though there is good agreement for most alkyl groups between the two solvents. There is also a discrepancy, although smaller, for the $\mathrm{Cl}^{-}-\mathrm{Pe}^{\mathrm{neo}} \mathrm{Br}$ exchange, $\delta \Delta H^{\ddagger}$ being 6.0 in acetone and $8.4 \mathrm{kcal} \mathrm{mol}^{-1}$ in DMF. In Table 4 we give what we consider to be the most reasonable values of $\delta \Delta H^{\ddagger}$ and $\delta \Delta S^{\ddagger}$ for the $\mathrm{Br}^{-}-\mathrm{RBr}$ reaction.

The 'Stiff' Transition-state Model.-The simplest transition state for the $S_{\mathrm{N}} 2$ reaction (2) is the stiff model shown in Scheme 1. No bond-bending or -stretching is
 $\Delta S^{\ddagger}(\mathrm{MeX})$.
et al. ${ }^{2}$ in their calculations on a stiff transition-state model, and the average of the partial bond lengths used in our own calculations on the plastic model. In Table 5 we summarise results of our calculations; as well as the direct quantity $E^{\ddagger}{ }_{\text {min }}$, there are also rotational restrictions $\left(F^{\ddagger}{ }_{\beta}\right)$ of the β-methyl groups as they eclipse the bromine atoms in the transition state.

The calculated values of $\delta \Delta G^{\ddagger}$ show surprisingly good agreement with experiment, except for the hindered alkyl groups Bu^{i} and $\mathrm{Pe}^{\text {neo }}$. Thus, as we found in our calculations before, ${ }^{1}$ a stiff transition state model is quite realistic when steric effects are not too large. The stiff model, however, does not reproduce the observed values of $\delta \Delta H^{\ddagger}$ very well. It is of interest that our calculated values of $\delta \Delta H^{\ddagger}$ are generally too high, whereas Ingold's calculated values are generally too low.

The 'Flexible' Transition-state Model.--In order to obtain better agreement with experiment than was possible with the stiff model, Ingold ${ }^{3}$ carried out calculations on an ' elastic' model in which the $\mathrm{C}_{\mathbf{0}} \cdots \mathrm{Br}$ partial bonds were allowed to stretch. His results using the elastic model, in terms of $\delta \Delta H^{\ddagger}$ (calc.), were not very different from those with the stiff model, however, and so we

[^1]turned to a model that allows bond-bending but not bondstretching. We term this a flexible model, shown in Scheme 2. In the flexible model, the $\mathrm{BrC}_{\mathbf{0}} \mathrm{Br}$ angle is

Scheme 2 The flexible transition-state model
allowed to vary from 180° to an angle ($\left.180-2 \gamma\right)^{\circ}$ where γ is defined in Scheme 2.* Since the $\mathrm{C}_{0} \cdots \mathrm{Br}$ partial bonds are the weakest bonds in the transition state, the energy required to bend the $\mathrm{Br} \cdots \mathrm{C}_{0} \cdots \mathrm{Br}$ bonds should be comparatively small. We took a bending force constant $\left(k / r^{2}\right)$ of 0.055×10^{5} dyn cm^{-1}, that is about half the

Results obtained with the flexible model are in Table 6. The various interactions that lead to $E^{\ddagger}{ }_{\text {min }}$ are given, as well as the transition state rotational factors. Agreement between the calculated and observed parameters is now good, not only for $\delta \Delta G^{\ddagger}$ but also for $\delta \Delta H^{\ddagger}$ and $\delta \Delta S \ddagger$. Thus the incorporation of the $\mathrm{BrC}_{0} \mathrm{Br}$ bond bending into the calculations very considerably improves the agreement. Even for the hindered cases, $\mathrm{R}=\mathrm{Bu}^{\mathrm{t}}, \mathrm{Bu}^{\mathrm{i}}$, and $\mathrm{Pe}^{\text {neo }}$, the observed activation parameters are quite well reproduced, the only discrepancies of any note being in the calculated $\delta \Delta H^{\ddagger}$ and $\delta \Delta S^{\ddagger}$ values for the $\mathrm{Pe}^{\text {neo }}$ group. Just as in the simple case of the stiff model, we have not had to introduce any polar factors in order to obtain agreement with experiment. This could, of course, be an artifact due to our use of a flexible model whereas Ingold's assumed polar terms were incorporated into calculations based on a plastic model. We felt it

Table 5
Calculations using the stiff transition state model, with $\mathrm{C}_{0} \cdots \mathrm{Br}$ fixed at $2.22 \AA$. Energies are in cal mol ${ }^{-1}$, and all data are at 298 K

	Me	Et	Pri	$\mathrm{Bu}^{\text {t }}$	Pr^{n}	$\mathrm{Bu}^{\text {i }}$	Pe ${ }^{\text {neo }}$
$E^{\ddagger}{ }_{\text {min }}$	0	2696	5269	7719	2140	6330	>57000
$E^{\ddagger}{ }_{\text {min }}-E^{\mathrm{i}}{ }_{\text {min }}$	0	2611	5099	7464	2351	6611	>57000
$F^{\ddagger} \beta$					0.218	0.0758	?
$F^{\ddagger}{ }_{\beta} / F^{\text {i }}$,					0.335	0.191	
$\delta \Delta G^{\ddagger}$ (calc.)	0	2610	5100	7460	3000	7590	>57000
$\delta \Delta G^{\ddagger}$ (obs.)	0	2560	5240	7500	2820	4580	10500
$\delta \Delta H^{\ddagger}$ (calc.)	0	2610	5100	7460	2350	6610	>57000
$\delta \Delta H^{\ddagger}$ (obs.)	0	1700	3900	~ 8000	1700	3100	~ 9000
$\delta \Delta H^{\ddagger}$ (calc. ref. 3)	0	900	1900	2800	900	2800	13900

Table 6
Calculations using the flexible transition state model, with $\mathrm{C}_{0} \cdots \mathrm{Br}$ fixed at $2.22 \AA$. Energies are in cal mol ${ }^{-1}$, and

all data are at 298 K							
Interaction	Me	Et	Pr^{1}	$\mathrm{Bu}^{\text {t }}$	Pr^{n}	Bu'	Pe ${ }^{\text {neo }}$
$\alpha-\mathrm{Me}-\mathrm{Br}$		1031	3128	8088	1031	450	-312
$\beta-\mathrm{Me}-\mathrm{Br}$					-590	598	3128
$\alpha-\mathrm{Me}-\alpha-\mathrm{Me}$			-123	-369			
Bond bending [$\gamma\left({ }^{\circ}\right)$]		595(5)	856(6)	0(0)	595(5)	$1522(8)$	7 702(18)
$E^{\ddagger}{ }_{\text {min }}$	0	1626	3861	7719	1036	2570	10518
$E^{\dagger_{\text {min }}}-E_{\text {min }}^{\mathrm{i}}$	0	1541	3691	7464	1247	2847	10481
$F^{\ddagger}{ }_{\alpha}$		0.294	0.167		0.294	0.270	0.292
$F^{+}{ }_{\beta}$					0.264	0.105	0.680
$F \alpha^{\ddagger} F^{\ddagger}{ }_{\beta} / F^{\mathbf{i}}{ }_{\beta}$	(1)	0.294	0.167	(1)	0.119	0.0715	0.812
$\delta \Delta G^{\ddagger}$ (calc.)	0	2270	4750	7460	2510	4410	10600
$\delta \Delta G^{\ddagger}$ (obs.)	0	2560	5240	7500	2820	4580	10500
$\delta \Delta H^{\ddagger}$ (calc.)	0	1540	3690	7460	1250	2850	10480
$\delta \Delta H^{\ddagger}$ (obs.)	0	1700	3900	~ 8000	1700	3100	~ 9000
$\delta \Delta S^{\ddagger}$ (calc.)	0	-2.4	-3.6	0.0	-4.2	-5.2	-0.4
$\delta \Delta S^{\ddagger}$ (obs.)	0	-2.7	-4.6	~ 1.7	-4.1	-5.0	~-5.0

force constant for the $\mathrm{Br}-\mathrm{B}-\mathrm{Br}$ bend $\left(0.13 \times 10^{5}\right)$ and about a quarter of that for the $\mathrm{Br}-\mathrm{C}-\mathrm{Br}$ bend $(0.24 \times$ $\left.10^{5}\right) .{ }^{8}$ Any $\mathrm{Me}-\mathrm{Br}$ interaction that is lowered by bondbending is counteracted to some extent by the energy required to bend the bond, and the sum total must be minimised in order to derive the value of $E^{\ddagger}{ }_{\text {min }}$.

Rotation of β-methyl groups around the $\mathrm{C}_{\alpha}-\mathrm{C}_{0}$ axis will be restricted because of the energy barrier to the eclipse of the bromine atoms $\left(F^{\ddagger}\right)$, but in addition there will also be a (small) energy barrier to rotation of α-methyl groups around the $\mathrm{C}_{0}-x$ axis, since the $\mathrm{C}_{\alpha}-\mathrm{Br}$ distance changes with α-rotation.

* Note that the C_{α} group need not be positioned as shown in Scheme 2, but is allowed to rotate about the x-axis until the total transition state energy is a minimum.
obligatory, therefore, to repeat the calculations using a plastic model close to the type of transition state model used by Ingold.

The Plastic Transition-state Model.-The flexible model (Scheme 2) is used as a basic, but the $\mathrm{C}_{\mathbf{0}} \cdots \mathrm{Br}$ partial bond is now allowed to stretch from an equilibrium distance that we take as $2.19 \AA$. We estimated a value for the stretching force constant of $1.8 \times 10^{5} \mathrm{dyn} \mathrm{cm}^{-1}$, rather less than the value of $2.8 \times 10^{5} \mathrm{dyn} \mathrm{cm}^{-1}$ for a normal C- Br stretch. ${ }^{8}$ Since the stretching energy terms turn out to be quite small, the actual value of the force constant chosen is not critical. In the flexible model, the

[^2]$\mathrm{Br} \cdots \mathrm{C}_{\mathbf{0}} \cdots \mathrm{Br}$ bonds were allowed to bend in the $x y$ plane by an angle γ, corresponding to the distance Δy in Scheme 3. The plastic model incorporates another bending mode, this time along the z-axis, by an angle θ, corresponding to a distance Δz.* * As before, we took a bending

For most of the transition states, the values of $E \ddagger$ are not very sensitive to the values of γ, θ, and the $\mathrm{C}_{\mathbf{0}} \cdots \mathrm{Br}$ length in the transition state. As an example (Table 8), we give the calculated values of $E \ddagger$ for the $\mathrm{Pe}^{\text {neo }}$ transition state as a function of γ and the $\mathrm{C} \cdots \mathrm{Br}$ length when

Table 7
Calculations using the plastic transition state model. Energies are in cal mol^{-1}, and all data are at 298 K .

	Me	Et	$\mathrm{Pr}^{\text {t }}$
$\mathrm{C}_{0} \cdots \mathrm{Br}$ length (\AA)	2.19	2.20	2.21
Bond angle $\gamma\left({ }^{\circ}\right.$)	0	5	6
Bond angle $\theta\left({ }^{\circ}\right.$)	0	0	0
Interaction $\alpha-\mathrm{Me}-\mathrm{Br}$		1140	3244
$\beta-\mathrm{Me}-\mathrm{Br}$			
$\alpha-\mathrm{Me}-\alpha-\mathrm{Me}$			-123
$\mathrm{C}_{0} \cdots \mathrm{Br}$ stretch		25	104
Bond bending [$\gamma\left({ }^{\circ}\right)$]		595	856
Bond bending [$\left.\theta\left({ }^{\circ}\right)\right]$			
$E^{\ddagger}{ }_{\text {min }}$	0	1760	4081
$E{ }^{\ddagger}$ min $-E_{\text {min }}$	0	1675	3911
$F^{\ddagger}{ }_{\alpha}$		0.292	0.164
$F^{\dagger}{ }_{\beta}$			
$F^{\ddagger}{ }_{\alpha} F^{\ddagger}{ }_{\beta} / F^{1}{ }_{\beta}$	(1)	0.292	0.164

force constant of $0.055 \times 10^{5} \mathrm{dyn} \mathrm{cm}^{-1}$ for the γ - and θ-bends.

Calculations in terms of the plastic model are much more complicated than those with the flexible model,

Table 8					
$\mathrm{C}_{0} \cdots \mathrm{Br}(\AA)$		2.20	2.21	2.22	2.23
		$E^{\ddagger} / \mathrm{cal} \mathrm{mol}^{-1}$			
$\gamma\left({ }^{\circ}\right.$	16	10764	10715	10717	10773
	17	10675	10636	10648	10724
	18	10739	10720	10750	10844

since the transition state energy now has to be minimised with respect to the $\mathrm{C}_{0} \cdots \mathrm{Br}$ stretch, two bondbending modes, and the $\mathrm{Me}-\mathrm{Br}$ interactions that take

Bu^{t}	Pr^{n}	Bu^{1}	$\mathrm{Pe}^{\text {neo }}$
2.24	2.20	2.20	2.21
0	5	8	15
0	0	0	6
7494	1140	524	-170
	-593	672	3580
-369			
648	25	25	104
	595	1522	5348
			856
7773	1167	2743	9718
7518	1378	3020	9681
	0.292	0.261	0.285
	0.255	0.109	0.215
(1)	0.0744	0.0284	0.0613

θ is fixed at zero. For $\theta=0^{\circ}$, the energy is minimised at $10636 \mathrm{cal} \mathrm{mol}^{-1}$ when the $\mathrm{C}_{0} \cdots$ Br length is $2.21 \AA$ and $\gamma=17^{\circ}$; naturally, in order to find the true minimum energy, $E^{\ddagger}{ }_{\text {min }}$, these calculations are repeated for various values of θ. A similar flat energy surface to the above also occurs with respect to θ, the combinations $\gamma=14^{\circ}$, $\theta=7^{\circ}$, and $\gamma=16^{\circ}, \theta=5^{\circ}$ yielding valuesof E^{\ddagger} only $c a .100 \mathrm{cal} \mathrm{mol}^{-1}$ higher than the $E^{\ddagger}{ }_{\text {min }}$ value that occurs when $\gamma=15^{\circ}, \theta=6^{\circ}$ (in these three calculations the $\mathrm{C}_{0} \cdots \mathrm{Br}$ length was $2.21 \AA$).

DISCUSSION

The breakdown of transition state steric effects, in terms of the plastic model, is in Table 7, and the calculated

Table 9
Calculated and observed activation parameters for the $\mathrm{Br}^{-}-\mathrm{RBr}$ exchange using the plastic transition state model

	Me	Et	Pr^{1}	$\mathrm{Bu}^{\text {t }}$	$\mathrm{Pr}^{\mathbf{n}}$	Bu'	Pe ${ }^{\text {neo }}$
$\delta \Delta G^{\ddagger}$ (calc.), this work	0	2410	4980	7520	2660	4580	10500
$\delta \Delta G^{\text {t }}$ (calc.), ref. 3	0	2410	4720	5840	2800	4720	10140
$\delta \Delta G^{\ddagger}$ (obs.)	0	2560	5240	~ 7500	2820	4580	~ 10500
$\delta \Delta H^{\ddagger}$ (calc.), this work	0	1700	3900	7500	1400	3000	9700
$\delta \Delta H^{\ddagger}$ (calc.), ref. 3	0	1800	3600	5500	1800	3300	8300
$\delta \Delta H^{\ddagger}$ (obs.)	0	1700	3900	~ 8000	1700	3100	~ 9000
$\delta \Delta S^{\ddagger}$ (calc.), this work	0	-2.4	-3.6	0.0	-4.3	-5.2	-2.7
$\delta \Delta S^{\ddagger}$ (calc.), ref. 3	0	-2.1	-3.8	-1.1	-3.3	-4.7	-6.3
$\delta \Delta S^{\ddagger}$ (obs.)	0	-2.7	-4.6	$\sim+1.7$	-4.1	-5.0	~-5.0

$\Delta G, \Delta H$ in cal mol${ }^{-1}, \Delta S$ in cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$.
place as α - and β-rotation occurs. The various interactions that make up the value of $E^{\ddagger}{ }_{\text {min }}$ are summarised in

Scheme 3 The bending modes in the plastic transition-state model.

Table 7. The second bending mode is of consequence only in the $\mathrm{Pe}^{\text {neo }}$ transition state, when a bend $\theta=6^{\circ}$ reduces the transition state energy by ca. $900 \mathrm{cal} \mathrm{mol}^{-1}$.
activation energies are compared with the observed values in Table 9. In all the plastic transition states, provision of stretching has increased the length of the $\mathrm{C}_{\mathbf{0}} \cdots \mathrm{Br}$ bond from its equilibrium value of $2.19 \AA$. The increases are all quite small, that in the Bu^{t} transition state being the largest $(0.05 \AA)$. Of the terms that make up the

* It is convenient to consider the two bending modes separately, although the angles γ and θ could be combined to yield a resultant angle. In practice, the second bending mode (θ) is of consequence only for the $\mathrm{Pe}^{\text {neo }}$ group, when $\gamma=15$ and $\theta=6^{\circ}$, giving bending energies of 5348 and 856 (total $6204 \mathrm{cal} \mathrm{mol}^{-1}$). In this case, the resultant angle may be calculated as $16^{\circ} 8^{\prime}$, giving a bending energy of $6187 \mathrm{cal} \mathrm{mol}^{-1}$. The difference between 6204 and 6187 cal mol^{-1} is so small as to be quite insignificant.
value of $E^{\ddagger}{ }_{\text {min }}$, the $\alpha-\mathrm{Me}-\mathrm{Br}$ interactions are by far the largest in the Et, Pr^{i}, and Bu^{t} transition states. The situation in the β-methylated series $\left(R=\operatorname{Pr}^{n}, B u^{i}\right.$, and $\mathrm{Pe}^{\text {neo }}$) is not so clearcut, with terms due to bond-bending now making major contributions to E^{\ddagger} min. Rotational factors also influence the final rate factors markedly with both β-rotation around the $\mathrm{C}_{\alpha}-\mathrm{C}_{0}$ axis, and α-rotation around the x-axis contributing. In the case of the Bu^{t} transition state, the angle γ is effectively 0° since any deviation of the bromine atoms by a distance Δy greatly increases the $\alpha-\mathrm{Me}-\mathrm{Br}$ interaction. For the other transition states, the α-Me groups (or α-groups) can be positioned so that α-group- Br interactions are decreased with increase in γ. Similarly the angle θ is zero (except for the Pe ${ }^{\text {neo }}$ case) because the sideways movement of the bromine atoms by a distance Δz usually results in a net increase in the interaction of the alkyl groups with the bromine atoms; only for the $\mathrm{Pe}^{\text {neo }}$ transition state does a movement Δz decrease the net steric interactions.

When our three sets of calculations are compared with the experimental observations, it is seen that although there is a marked improvement on changing from the stiff model to the flexible model, especially for the Bu^{i} and $\mathrm{Pe}^{\text {neo }}$ calculations, results from the flexible and plastic models are quite similar. Thus in view of the much more complex calculations using the plastic model, we feel that the flexible model provides the best compromise between results obtained and time of computation. Where steric effects are not too large, the very simple stiff model yields reasonable results, especially in terms of $\delta \Delta G^{\ddagger}$. There seems little point using any model more complex than the plastic model; any further refinement we think would affect the calculated $\delta \Delta G^{\ddagger}$ values only marginally and would alter the calculated $\delta \Delta H^{\ddagger}$ and $\delta \Delta S^{\ddagger}$ values probably only in the $\mathrm{Pe}^{\text {neo }}$ case. In general, the agreement between the calculated and observed activation parameters (Table 9) is good enough to render further refinement unnecessary. Using our approach, the observed values of $\delta \Delta H^{\ddagger}$ arise through nonbonded interactions in the transition states, and the values of $\delta \Delta S^{\ddagger}$ (obs.) through restricted rotation of groups in the transition state. Initial state effects, although taken into account, are rather small (Table 2).

As far as our original intention is concerned, we have shown that the methods used previously ${ }^{1}$ to calculate steric effects in the $S_{\mathrm{E}} 2$ (Ret) reaction (1) can be applied successfully to calculate steric effects in the $S_{\mathrm{N}} 2$ (Inv) reaction (2), using exactly the same covalent radii, van der Waals radii, and nonbonded potential functions. To our knowledge, this is the first time that one set of nonbonded functions has been used to calculate steric effects in transition states that are geometrically quite different. Since the above radii and functions were taken as fixed at the start of our calculations, we have been left with a minimum of adjustable and empirical parameters. In calculations using the stiff model, the only such parameter

[^3]we used was the $\mathrm{C}_{\mathbf{0}} \cdots \mathrm{Br}$ bond length, taken as an average of $2.22 \AA$.* With the flexible model, two parameters were used, the $\mathrm{C}_{\mathbf{0}} \cdots \mathrm{Br}$ bond length and the $\mathrm{Br} \cdots \mathrm{C}_{0} \cdots \mathrm{Br}$ bond-bending constant. Even with the plastic model, we used only three parameters, the $\mathrm{C}_{0} \cdots \mathrm{Br}$ equilibrium bond length of $2.19 \AA$, the $\mathrm{Br} \cdots \mathrm{C}_{\mathbf{0}} \cdots \mathrm{Br}$ bond-bending constant, and the $\mathrm{C}_{0} \cdots \mathrm{Br}$ stretching force constant. With these three parameters, we could account for the 18 values of $\delta \Delta G^{\ddagger}, \delta \Delta H^{\ddagger}$, and $\delta \Delta S^{\ddagger}$, of which 12 are independent parameters.

Finally, we compare our calculations using the stiff model (Table 5) and the plastic model (Table 9) with those of Ingold ${ }^{3}$ using similar models. Our stiff model, although giving reasonable values of $\delta \Delta G^{\ddagger}$, generally yields $\delta \Delta H^{\ddagger}$ values that are too high, whereas Ingold's calculations yield $\delta \Delta H^{\ddagger}$ values that are generally too low. For the two sets of calculations on the plastic model, there is good agreement with experiment in both cases, and there is little point in attempting to select the 'best' set of calculations. Although both sets of calculations give ΔH^{\ddagger} values that are close to those observed experimentally, there is considerable difference between the sets in terms of the origin of the $\delta \Delta H^{\ddagger}$ values. Let us take the values for the Bu^{t} transition state as an example. Our value of $7.5 \mathrm{kcal} \mathrm{mol}^{-1}$ is composed entirely of steric effects, the sum total of transition state steric effects, including nonbonded interactions and bond stretching, being $7.8 \mathrm{kcal} \mathrm{mol}^{-1}$, and initial state steric effects being $0.3 \mathrm{kcal} \mathrm{mol}^{-1}$. On the other hand, Ingold's value of $5.5 \mathrm{kcal} \mathrm{mol}^{-1}$ is composed of steric effects (only 2.5 kcal mol^{-1}) plus a large contribution from polar effects (3 kcal mol^{-1}). This is in line with results on the simple stiff model, where our $\delta \Delta H^{\ddagger}$ (calc.) values are also much higher than Ingold's. Since the only real justification for incorporation of polar effects is the agreement between theory and experiment so provided, our calculations thus lead to the conclusions that there is no need to postulate polar effects at all. \dagger This conclusion is of interest enough to warrant further investigation on the origin of the calculated $\delta \Delta H^{\ddagger}$ values. First, there are small but possibly significant differences in the geometry of the plastic transition states; our $\mathrm{C}_{0} \cdots \mathrm{Br}$ bond length is $2.24 \AA$ in the Bu^{t} transition state, whereas the $\mathrm{C}_{0} \cdots \mathrm{Br}$ distance is $2.29 \AA$ on Ingold's geometry. ${ }^{3}$ If we used the latter distance in the Bu^{t} transition state (corresponding to an equilibrium distance of $2.25 \AA$), our value of $\delta \Delta H^{\ddagger}$ (calc.) would be lowered by $1.3 \mathrm{kcal} \mathrm{mol}^{-1}$ to give $\delta \Delta H^{\ddagger}$ (calc.) as 6.2 kcal $\mathrm{mol}^{-\mathbf{1}}$, still very much larger than Ingold's steric interaction of $2.5 \mathrm{kcal} \mathrm{mol}^{-1}$. The second difference between the calculations to give $\delta \Delta H^{\ddagger}$ lies in the computation of the nonbonded interactions; we have taken the methyl

[^4]group as a single entity and in the Bu^{t} transition state calculate, for example, the $\mathrm{Me}-\mathrm{Br}$ interactions, whereas Ingold calculates the various $\mathrm{C}-\mathrm{Br}$ and $\mathrm{H}-\mathrm{Br}$ interactions separately. It is not possible to assess exactly the effect of these two procedures in a given example, since Ingold does not give a break-down of the total steric effect (2.5 kcal mol^{-1}) into its component interactions, but it seems reasonably certain that the different calculated values of $\delta \Delta H^{\ddagger}$ arise mainly through the different nonbonded potential functions employed.

It is not our intention to criticise the procedure and functions used by Ingold, ${ }^{3}$ but merely to point out that the conclusion that polar effects operate in these $S_{\mathrm{N}} 2$ reactions depends almost entirely on the way the nonbonded interactions in the transition states are calculated. Ingold's methods lead to very small calculated steric effects, especially in the α-methylated series, so that a polar transition state factor is required in order to obtain agreement with experiment. Our method leads to calculated steric effects of about the correct magnitude, so that no polar factors are needed. On the plastic model, the two procedures yield the values in Table 10 for $\delta \Delta H^{\ddagger}$.

It is therefore arguable whether or not there is a polar transition state effect in operation in the $S_{\mathrm{N}} 2$ halide exchange reactions. From our own calculations we conclude that a polar effect is not present, but other workers

Table 10
Comparison of calculations of $\delta \Delta H^{\ddagger}$ for the $\mathrm{Br}^{-}-\mathrm{RBr}$
exchange
Me Et $\mathrm{Pr}^{\mathrm{i}} \mathrm{Bu}^{\mathrm{t}} \mathrm{Pr}^{\mathrm{n}} \quad \mathrm{Bu}^{i} \quad \mathrm{Pe}{ }^{\text {neo }}$
Ingold's calc.

Calculated steric effect	0	0.8	1.6	2.5	0.8	2.3	7.3
Assumed polar effect	0	1.0	2.0	3.0	1.0	1.0	1.0
Total $\delta \Delta H^{\ddagger}$ (calc.) $^{3} /$	0	1.8	3.6	5.5	1.8	3.3	8.3

$\underset{\text { kcal }}{\text { Total }} \delta \Delta H^{\ddagger}$ (calc.) ${ }^{3} /$
kcal mol ${ }^{-1}$
This work
$\begin{array}{llllllll}\text { Calculated steric effect } & 0 & 1.7 & 3.9 & 7.5 & 1.4 & 3.0 & 9.7\end{array}$ $=\delta \Delta H^{\ddagger}$ (calc.) $/ \mathrm{kcal}$ mol^{-1}

may assess differently the evidence that we have here presented.
S.R.C. research studentships (to P. L. G. and M. J. H.) are gratefully acknowledged.
[4/2608 Received, 16th December, 1974]

[^0]: ${ }^{2}$ I. Dostrovsky, E. D. Hughes, and C. K. Ingold, J. Chem. Soc., 1946, 173.

[^1]: ${ }^{6}$ A. Streitwieser, jun., Chem. Rev., 1956, 56, 571.
 ${ }^{7}$ K. Okamoto, I. Nitta, T. Imoto, and H. Shingu, Bull. Chem. Soc. Japan, 1967, 40, 1905.

[^2]: ${ }^{8}$ E. B. Wilson, J. C. Decius, and P. C. Cross, ' Molecular Vibrations,' McGraw-Hill, New York, 1955.

[^3]: * This is the average of the various $\mathrm{C}_{0} \cdots \mathrm{Br}$ bond lengths in the plastic models, after stretching from $2.19 \AA$ to the values in the transition states ($2.20-2.24 \AA$).

[^4]: \dagger Evans has previously suggested ${ }^{9}$ that constitutional effects of alkyl groups in $S_{\mathrm{N}} 2$ reactions are steric in origin. This conclusion, however, was based on qualitative arguments and was not supported by quantitative studies; in the only quantitative calculation given, Evans found that for the I--RI reaction, $\delta \Delta H^{\ddagger}$ was ca. $2 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ for $\mathrm{R}=\mathrm{Bu}^{\mathrm{t}}$ whereas the observed value is probably nearer to $8 \mathrm{kcal} \mathrm{mol}^{-1}$.
 ' A. G. Evans, Tyans. Faraday Soc., 1946, 42, 719.

